

# Abstracts

## 5 GHz High-Temperature-Superconductor Resonators with High Q and Low Power Dependence up to 90 K

C. Wilker, Z.-Y. Shen, P. Pang, D.W. Face, W.L. Holstein, A.L. Matthews and D.B. Laubacher.

"5 GHz High-Temperature-Superconductor Resonators with High Q and Low Power

Dependence up to 90 K." 1991 *Transactions on Microwave Theory and Techniques* 39.9 (Sep. 1991 [T-MTT] (Special Issue on Microwave Applications of Superconductivity)): 1462-1467.

We have fabricated high-temperature superconducting films made of TlBaCaCuO (2212) and YBaCuO (123) by postdeposition annealing techniques on (100) LaAlO<sub>3</sub> substrates. These films, especially the TlBaCaCuO (2212), exhibit a unique combination of microwave properties: high temperature operation, high Q (low surface resistance), and low power dependence. Both types of films have measured surface resistances which are better than 1/10 that of copper at 20 GHz. (These low surface resistance values are realized below 98 K for TlBaCaCuO (2212) and below 84 K for YBaCuO (123).) Microstrip resonators with a fundamental resonance frequency of 5 GHz were fabricated from these materials. The performance of our best resonator at 90 K (loaded Q > 20000 at 5 GHz) was 50 times better than an analogous copper resonator (also measured at 90 K) and can handle more than 10 W of peak power in the resonator with only a small degradation of the Q. In addition, the shift of the resonator frequencies with temperature was fit to a two-fluid model. The parameters for TlBaCaCuO (2212) were T<sub>c</sub> = 101.0 K and λ<sub>0</sub> = 4700 Å and for YBaCuO (123) were T<sub>c</sub> = 91.1 K and λ<sub>0</sub> = 6800 Å.

[Return to main document.](#)

Click on title for a complete paper.